ALIGNVID: TRAINING-FREE ATTENTION SCALING FOR SEMANTIC FIDELITY IN TEXT-GUIDED IMAGE-TO-VIDEO GENERATION

Anonymous authors

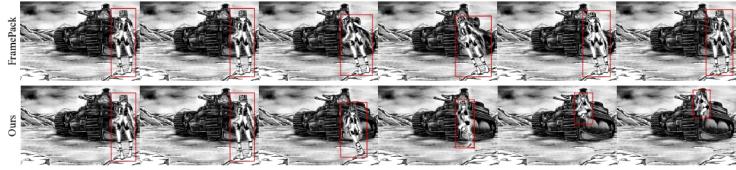
Paper under double-blind review

THE PROBLEM: SEMANTIC NEGLIGENCE IN TI2V

- >>> Text-guided image-to-video (TI2V) models
 often fail to adhere to fine-grained
 prompt semantics.
- This failure is particularly evident when prompts require substantial transformations of the input image, such as adding, deleting, or modifying objects.
- >>> We term this shortcoming semantic
 negligence, where the model preserves the
 original image instead of executing the
 requested edit.

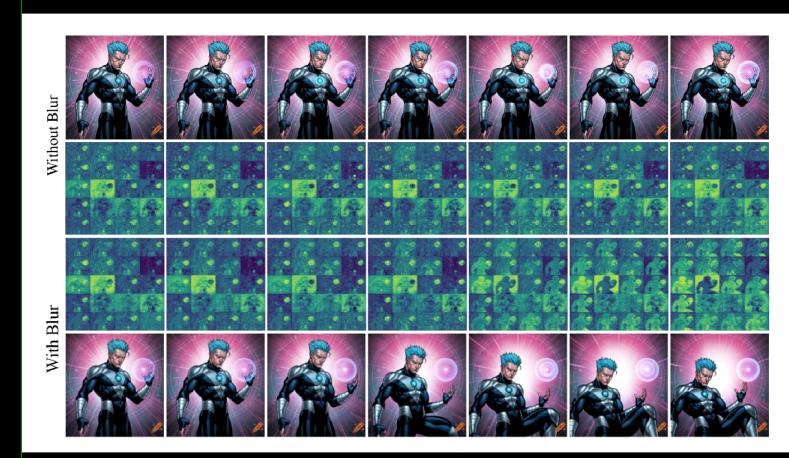
(a) Generation result given the prompt: "A sunflower grows in front of the house."

(b) Generation result given the prompt: "The person climbs up onto the tank, changing their pose accordingly."



PILOT STUDY: A SURPRISING OBSERVATION

- In a pilot study, we found that applying a simple Gaussian blur to the input image unexpectedly improves semantic adherence and motion dynamics.
- Analyzing the attention maps revealed that this perturbation leads to a clearer separation between foreground and background.
- This suggests that modulating the model's attention distribution could be a key to improving prompt fidelity.



KEY INSIGHT & RESEARCH QUESTION

- >>> The pilot study connects improved semantic fidelity to a more concentrated, lower-entropy attention distribution.
- >>> This raises a critical question: Can we directly regulate the model's attention distribution—without altering the user's input —to enhance semantic alignment while preserving visual fidelity?

OUR SOLUTION: ALIGNVID

Attention Scaling Modulation (ASM)

Directly reweights attention by scaling Query (Q) or Key (K) representations, yielding a more concentrated, lower-entropy attention distribution.

Guidance Scheduling (GS)

Selectively applies ASM across specific transformer blocks and denoising steps to maximize semantic impact while minimizing degradation of visual quality.

THEORETICAL FOUNDATION: AN ENERGY-BASED VIEW

- >> We analyze attention from an energy-based perspective, where attention probabilities are the gradient of a log-partition function \$\Phi(z)\$.
- >> The sharpness of the attention distribution is related to the curvature of this underlying energy landscape.

$$\operatorname{Attn}(Q_t, K_t, V_t) = \sigma(rac{Q_t K_t^ op}{\sqrt{d}}) V_t, \quad ext{where } \sigma(z^{(i)}) =
abla_{z^{(i)}} \Phi(z^{(i)}) =
abla_{z^{(i)}} \log \sum_{j=1}^m \exp(z_j^{(i)})$$

ANALYSIS OF ATTENTION SCALING

01 Q/K Scaling as Temperature Control

- >> Scaling Q or K by factors
 \$\gamma_t\$ and \$\eta_t\$ is
 equivalent to softmax with an
 inverse temperature \$\alpha_t =
 \gamma_t \eta_t\$.
- >> An \$\alpha_t > 1\$ sharpens the
 attention distribution, making it
 more_focused.

02 Entropy Monotonicity

- >> Increasing the scaling factor
 \$\alpha\$ is proven to
 monotonically reduce the entropy
 of the attention distribution.
- >> This leads to a more concentrated, less uncertain allocation of attention.

03 Asymptotic Curvature Decay

While initial scaling can increase curvature, beyond a certain threshold, it causes the energy landscape to flatten, stabilizing the attention mechanism.

$$Z_t' = rac{1}{\sqrt{d}} (\gamma_t Q_t) (\eta_t K_t)^ op = (\gamma_t \eta_t) Z_t := lpha_t Z_t$$

COMPONENT 1: ATTENTION SCALING MODULATION (ASM)

01 Scalar Scaling

Apply a simple multiplicative scalar $\gamma_s>1$ to either Q or K embeddings. This amplifies the contrast between relevant and irrelevant regions.

02 Energy-Based Scaling

Adaptively set the scaling coefficient based on the diffuseness of the attention logits, encouraging stronger modulation when attention is less focused.

$$\operatorname{Attention}_{ASM}(Q,K,V) = \operatorname{softmax}(rac{(\gamma_s Q)K^T}{\sqrt{d_k}})V$$

COMPONENT 2: GUIDANCE SCHEDULING (GS)

01 Block-level Guidance (BGS)

ASM is applied only to 'foreground-sensitive' transformer blocks, identified via a lightweight calibration process based on attention maps.

02 Step-level Guidance (SGS)

ASM is activated only during a specific interval of the denoising process (e.g., early steps) to influence global semantic alignment without disrupting fine-detail generation.

$$Q'^{(l,t)} = (1 + s_Q imes g^{(l,t)})Q^{(l)}, \qquad K'^{(l,t)} = (1 + s_K imes g^{(l,t)})K^{(l)}$$

THE OMITI2V BENCHMARK

Content

Contains 367 image-text pairs covering diverse styles (real, synthetic, animation).

Evaluation Scenarios

Focuses on three core edit types: Addition, Deletion, and Modification.

Evaluation Protocol

Employs a VQA-based method
using structured yes/no
questions to assess
semantic compliance (e.g.,
'Did a sunflower
appear?').

BASELINE PERFORMANCE ON OMITI2V

>> Quantitative comparison
 shows that semantic
 negligence is prevalent
 across state-of-the-art
 open-source TI2V models.

Method	Modification †	Addition †	Deletion †	Dynamic Degree †	Aesthetic Quality †
Hunyuan I2V	63.28	60.34	61.94	17.74	62.04
Wan 2.1	72.35	71.75	63.13	46.02	63.12
Skyreels-v2- I2V	70.02	76.64	62.95	51.16	58.94
Skyreels-v2- DF	71.10	73.28	65 . 35	47.30	61.10
FramePack	64.99	68.55	58.14	20.05	63.94
FramePack F1	64.45	67.79	58.50	24.42	63.10
EasyAnimate	65.53	67.18	60.89	45.76	61.41

EFFECTIVENESS OF ALIGNVID

>>> AlignVid consistently
 improves semantic
 alignment and motion
 dynamics across multiple
 baseline models with only
 a marginal impact on
 aesthetic quality.

Method	Modification †	Addition †	Deletion †	Dynamic Degree 1	Aesthetic Quality †
FramePack	64.99	68.55	58.14	20.05	63.94
FramePack + Ours	68.22 (+3.23)	73.13 (+4.58)	60.21 (+2.07)	28.53 (+8.48)	63.57 (-0.37)
FramePack F1	64.45	67.79	58.50	24.42	63.10
FramePack F1 + Ours	71.27 (+6.82)	71.60 (+3.81)	61.06 (+2.56)	33 . 16 (+8 . 74)	62.10 (-1.00)
Wan2.1	72.35	71.75	63.13	46.02	63.12
Wan2.1 + Ours	77.20 (+4.85)	79.54 (+7.79)	69.47 (+6.34)	47.04 (+1.02)	61.63 (-1.49)

ABLATION: MODULATION STRATEGY

- >> Both scalar and energy-based
 scaling improve semantic
 fidelity.
- >> Scalar scaling provides a
 better trade-off between
 semantic gains and
 computational overhead, so it
 is adopted as the default.

Model / Strategy	Modification †	Addition †	Deletion †	Dynamic Degree †	Aesthetic Quality †
FramePack – Original	64.99	68 . 55	58.14	20.05	63 . 94
FramePack – Scalar scaling	67.15	73.44	59.86	28.28	63.41
FramePack – Energy-based	66.61	72.37	58.66	26.48	63.62
Wan2.1 – Original	72.35	71.75	63.13	46.02	63.12
Wan2.1 – Scalar scaling	72.53	80.76	70 . 33	53.21	62.38
Wan2.1 – Energy-based	72.40	75.65	67.86	48.90	62.67

ABLATION: GUIDANCE SCHEDULING

- >> <u>Block-level (BGS):</u> Limiting ASM to foreground-focused blocks improves semantic fidelity while mitigating aesthetic degradation.
- >> Step-level (SGS): Activating guidance in early denoising steps yields the
 largest semantic gains.
- Balancing Trade-offs: An early-step schedule on foreground-sensitive blocks is adopted by default, as it provides the best balance between semantic improvement and visual quality.

CONCLUSION

- >> We formalized **semantic negligence**, a key failure mode in TI2V models.
- >> We proposed <u>AlignVid</u>, a training-free framework using Attention Scaling Modulation (ASM) and Guidance Scheduling (GS) to enhance prompt adherence.
- >> We introduced the OmitI2V benchmark to systematically evaluate semantic fidelity for edit-based prompts.
- >> Our method significantly improves semantic alignment with negligible computational overhead and minimal impact on aesthetic quality.